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The pathogenesis of incipient Alzheimer’s disease (AD) has been
resistant to analysis because of the complexity of AD and the
overlap of its early-stage markers with normal aging. Gene mi-
croarrays provide new tools for addressing complexity because
they allow overviews of the simultaneous activity of multiple
cellular pathways. However, microarray data interpretation is
often hindered by low statistical power, high false positives or
false negatives, and by uncertain relevance to functional end-
points. Here, we analyzed hippocampal gene expression of nine
control and 22 AD subjects of varying severity on 31 separate
microarrays. We then tested the correlation of each gene’s expres-
sion with MiniMental Status Examination (MMSE) and neurofibril-
lary tangle (NFT) scores across all 31 subjects regardless of diag-
nosis. These well powered tests revealed a major transcriptional
response comprising thousands of genes significantly correlated
with AD markers. Several hundred of these genes were also
correlated with AD markers across only control and incipient AD
subjects (MMSE > 20). Biological process categories associated
with incipient AD-correlated genes were identified statistically
(EASE program) and revealed up-regulation of many transcription
factor�signaling genes regulating proliferation and differentia-
tion, including tumor suppressors, oligodendrocyte growth fac-
tors, and protein kinase A modulators. In addition, up-regulation of
adhesion, apoptosis, lipid metabolism, and initial inflammation
processes occurred, and down-regulation of protein folding�me-
tabolism�transport and some energy metabolism and signaling
pathways took place. These findings suggest a new model of AD
pathogenesis in which a genomically orchestrated up-regulation of
tumor suppressor-mediated differentiation and involution pro-
cesses induces the spread of pathology along myelinated axons.

A lzheimer’s disease (AD) has received intense study during past
decades. Multiple processes have been implicated in AD,

notably including abnormal �-amyloid (A�) production (1–7), tau
hyperphosphorylation and neurofibrillary tangles (NFTs) (8, 9),
synaptic pathology (10–12), oxidative stress (13–15), inflammation
(5, 16–19), protein processing or misfolding (20, 21), calcium
dyshomeostasis (15, 20–26), aberrant reentry of neurons into the
cell cycle (27, 28), cholesterol synthesis (29, 30), and effects of
hormones (23, 31) or growth factors (17, 32). Nevertheless, the
pathogenic factors that initiate these processes remain elusive.

Several reasons account for the substantial resistance of AD
pathogenesis to analysis. One is the vast extent and complexity
of the disease, which affects numerous molecules, cells, and
systems and impedes attempts to determine which alterations are
specifically associated with early pathology. Another is that
clinically normal subjects may exhibit considerable AD pathol-
ogy, blurring criteria for distinguishing subjects with normal
aging, mild cognitive impairment, or incipient AD (33–35).

We addressed the problems of high complexity and overlapping
criteria by using a strategy combining powerful new gene micro-
array technology, which permits measurement of the expression of
many thousands of genes simultaneously (36, 37), with statistical

correlation analyses. This strategy allowed the linking of gene
expression to cognitive and pathological markers of AD indepen-
dently of AD diagnosis. We also focused on subjects with the
earliest signs of AD. Several microarray studies of AD brain
(38–42) and�or mouse models of AD (43) have been published.
These studies have yielded important new insights, in particular,
regarding changes in plasticity-related genes (e.g., ref. 43). How-
ever, few microarray studies use independent sample sizes sufficient
to provide the statistical power needed to avoid high false positive
(type I) and�or high false negative (type II) error (44, 45). In the
present study, we ensured adequate power by using a separate array
for each hippocampal sample of a large group of subjects (n � 31)
and correlated the expression values of each of thousands of genes
with pathological and cognitive indexes of incipient AD. Together,
these approaches revealed a major and previously unrecognized
transcriptional response with potentially important implications for
the early pathogenesis of AD.

Methods
Human Brain Samples and Pathologic�Cognitive Assessment. Hip-
pocampal specimens used in this study were obtained at autopsy
from 35 subjects (16 female and 19 male; Table 1) through the
Brain Bank of the Alzheimer’s Disease Research Center at the
University of Kentucky. At autopsy, coronal sections of the left
hippocampus (3–5 mm) were immediately frozen in liquid
nitrogen and stored at �80°C until analyzed. Adjacent sections
were fixed in 10% formalin and used for neuropathologic
evaluation. Except for borderline AD subjects (see below), all
AD patients met Alzheimer’s Disease and Related Disorders
Association criteria for the clinical diagnosis of AD and Con-
sortium to Establish a Registry for Alzheimer’s Disease and
National Institute of Aging-Reagan Institute neuropathology
criteria for the diagnosis of AD. The frozen hippocampal tissues
were warmed to �20°C to enable dissection of CA1 and CA3
under a Zeiss surgical microscope.

The MiniMental State Examination (MMSE) is a reliable
index of AD-related cognitive status at a given point in time (46).
However, its rate of decline varies with severity, and mildly
impaired patients show little MMSE decline even after several
years (46). Recent MMSE data were available for most subjects
but, in subjects for whom the interval between the most recent
MMSE score and death was �1 year, the MMSE score was
adjusted downward by one point per year. This approach likely
underestimates MMSE decline for severely affected patients but
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seemed suitable for this study, given the slow MMSE decline in
less impaired subjects (46) and our focus on such subjects.
Postmortem scores on AD-related pathologic indices for Braak
staging, hippocampal NFTs, and diffuse and neuritic senile
plaques were determined as described (47). The MMSE and
NFT values were selected as our primary markers for quantifying
AD progression because of the Braak scale’s limited range and
because our NFT results correlated more closely with the MMSE
(r � 0.45) than did our plaque values (r � 0.19), consistent with
prior findings (33–35, 48). Further, the evidence that soluble
rather than deposited A� may be more relevant to cognitive
impairment is mounting (2, 5, 7).

Based primarily on MMSE criteria (35, 46), subjects were cate-
gorized initially into four groups, termed ‘‘Control’’ (MMSE �25),
‘‘Incipient AD’’ (MMSE 20–26), ‘‘Moderate AD’’ (MMSE 14–19),
and ‘‘Severe AD’’ (MMSE �14) (Table 1). Several borderline cases
(e.g., MMSE � 26) were assigned based on NFT, amyloid plaque,
and Braak stage data. In addition, four subjects exhibited more
cognitive deterioration (MMSE �20) than expected from their
NFT or amyloid scores. Because these subjects were potentially
affected by confounding conditions (49), they were excluded from
the analyses, leaving n � 31 overall.

RNA Isolation and Affymetrix GeneChip Processing. Procedures for
total RNA isolation, labeling, and microarray processing were
similar to those described (44), except that human GeneChips
(HG-U133A) and MICROARRAY SUITE 5 (MAS5; 50) were used.
Each subject’s CA1 subfield RNA was processed and run on a
separate chip. An average yield of 55 �g of biotin-labeled cRNA
target was obtained from 8 �g of total RNA each per CA1
sample, of which 20 �g of cRNA was applied to one array. cRNA
yield did not differ significantly among groups (P � 0.32), but the
most severe AD group exhibited a trend toward lower cRNA
levels, possibly reflecting greater cellular degeneration.

Microarray Data Analysis. Scaling and noise analyses were per-
formed as described (44) and Affymetrix algorithms for signal
intensity and presence P values (50), respectively, were used to
determine expression (relative abundance) and detection reli-
ability of transcripts. A gene probe set was rated ‘‘present’’ if it
was detected on at least four chips in the study. Individual values
were blanked and treated as missing values if they were �2 SD
away from the group mean. Finally, probe sets were considered
‘‘genes’’ if they had been assigned a ‘‘gene symbol’’ annotation
(Affymetrix database, www.affymetrix.com). Pearson’s correla-
tion tests and ANOVAs were performed in EXCEL 9.0 on data
copied from the MAS5 pivot table, as described (44).

Biological Process Categorization by Gene Ontology. As noted,
microarray studies face substantial false-positive concerns be-
cause of the large multiple comparison error (44, 45). Con-

versely, however, they can also strengthen statistical confidence
by providing evidence of coregulation of multiple genes that are
related by function or pathway (51–53). Here, we used a new
software tool, the EXPRESSION ANALYSIS SYSTEMATIC EXPLORER
(EASE; http:��david.niaid.nih.gov�david�ease.htm), to assign
identified genes to ‘‘GO: Biological Process’’ categories of the
Gene Ontology Consortium (www.geneontology.org) (51) and
to test statistically (EASE Score, a modified Fisher’s exact test)
for significant coregulation (overrepresentation) of identified
genes within each biological process category.

Results
Gene Identification Algorithm (Fig. 1). To test thousands of genes for
correlation with AD markers, while still managing multiple
comparison error, we excluded all ‘‘absent’’ or undefined (ex-
pressed sequence tags) genes (Fig. 1 A and B), thereby reducing
expected false positives (44). Pearson’s test was then used to test
each of the 9,921 remaining genes for its correlation with MMSE
and NFT scores (Fig. 1C). A total of 3,413 genes were signifi-
cantly associated (at P values of �0.05) with the MMSE, NFT,
or both, across all 31 subjects (overall correlations). These
correlated genes were termed ‘‘AD-related genes’’ (ADGs).

For both the MMSE and NFT analyses, we calculated the false
discovery rate, the number of false positives expected because of
multiple comparisons divided by the total positives found. The
false discovery rate provides a worst-case probability that any
gene identified (e.g., at P � 0.05) by correlation is significant
because of the error from multiple testing (44, 54). The observed
false discovery rates (�0.20; Fig. 1) are reasonably low for a
microarray study, in particular, considering the relatively relaxed
P value (P � 0.05), indicating good statistical power. [The false
discovery rate generally decreases with more stringent P value
criteria (44, 54). However, the confidence lost with a relaxed P

Table 1. Subjects in AD study

Control,
n � 9

Incipient,
n � 7

Moderate,
n � 8

Severe,
n � 7

Age 85.3 � 2.7 90 � 2.1 83.4 � 1.1 84 � 4.0
NFT 2.7 � 1.0 9.4 � 1.8 25.6 � 3.5 32.7 � 7.2
Braak 2.1 � 0.4 5 � 0.4 5.6 � 0.2 5.9 � 0.1
MMSE 27.7 � 0.5 24.3 � 1.1 16.5 � 0.6 6 � 1.4
PMI 2.6 � 0.2 3.3 � 0.6 3.2 � 0.2 3 � 0.1

Subjects were assigned to four groups reflecting different levels of AD
severity or Control (see Methods). n, number of subjects in each group; Age,
age at death; NFT, neurofibrillary tangle count; Braak, Braak stage; MMSE,
adjusted Minimental Status Exam (see Methods); PMI, postmortem interval.
Values are mean � SEM.

Fig. 1. Gene identification algorithm. (A) Genes rated absent (see Methods)
were excluded from analysis. (B) Only annotated probe sets (not expressed
sequence tags) were included in the statistical analysis. (C) Pearson correlation
was performed for every gene against both MMSE and NFT measures of each
subject. Venn diagram shows the number of genes significantly correlated
(P � 0.05) with both MMSE and NFT or either index alone. For each index, the
false discovery rate (FDR) was calculated. (D) For the genes found to correlate
significantly across all subjects (overall, n � 31), another Pearson’s correlation
was performed post hoc among only the subjects rated either ‘‘Control’’ or
‘‘Incipient’’ (Incipient, n � 16).
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value is substantially offset by the increased confidence gained
from expanding the overall number of identified genes and
strengthening the EASE analysis of coregulation (44, 52, 53).]

Because NFT scores increase and MMSE scores decrease with
AD severity, genes up-regulated with AD could only correlate
positively with NFT scores or negatively with the MMSE,
whereas genes down-regulated with AD could only correlate
positively with the MMSE or negatively with NFT scores. Fig. 2
illustrates examples of the four patterns of correlation that were
possible for ADGs. Overall, 1,977 ADGs were up-regulated and
1,436 were down-regulated. More were correlated with the
MMSE than with NFT scores. The full set of all identified ADGs
is included in Table 5, which is published as supporting infor-
mation on the PNAS web site.

In a subsequent step (Fig. 1D), we identified post hoc those
genes within this large set of ADGs that also correlated with AD
markers across a smaller subgroup comprising incipient AD and
control subjects (i.e., all subjects with MMSE � 20 and NFT �
20) (n � 16). Within this subset, only genes correlated in the
same direction as their overall correlations were considered. Of
the 3,413 overall ADGs, 609 were found also to correlate
significantly (at P values of �0.05) in the incipient subgroup, 258
with the MMSE, 262 with NFT scores, and 89 with both (termed
‘‘Incipient ADGs’’ or IADGs). More IADGs were up-regulated
with AD (431 genes) than were down-regulated (178 genes) (see
Table 6, which is published as supporting information on the
PNAS web site, for alphabetical lists of all IADGs).

Biological Processes Associated with ADGs and IADGs. Using EASE
analysis (see Methods), we identified biological process catego-
ries that showed a disproportionately high number of coregu-
lated genes (significant overrepresentation of ADGs or IADGs
in those categories). The Gene Ontology Biological Process
categories in which ADGs were overrepresented by EASE score
(in general, at P values of �0.05) are shown in Table 2. The
overrepresented categories for IADGs are shown in Table 3.
Because of the reduced number of genes and lower statistical
power in this post hoc analysis, however, we set the significance
level for identified categories of IADGs to P � 0.15.

Although many overrepresented categories were similar be-
tween Tables 2 and 3, notable differences also occurred. The

Fig. 2. Examples of correlated genes illustrating the four directions of
correlation through which genes were identified. For each gene, expression
intensity is plotted on the y axis, and MMSE (A Left and C Left) or NFT (B Right
and D Right) scores are plotted on the x axis; R2 value, P value (Pearson’s test),
linear fit (black line), and 95% confidence intervals (dashed lines) are also
shown. The MMSE scale is reversed, so that more advanced AD increases to the
right on both indexes. (A and B) Genes for which expression levels were
up-regulated with AD, identified by negative or positive correlation with
MMSE (A) or NFT (B) scores, respectively. (C and D) Genes for which expression
levels were down-regulated with AD, identified by positive or negative cor-
relation with MMSE (C) or NFT (D), respectively.

Table 2. Biological process categories overrepresented by overall correlations (ADGs)

Up-regulated (Total: 1,572�6,265; 25.1%) EASE N�M�B Down-regulated (Total: 1,126�6,265; 18.0%) EASE N�M�B

Regulation of transcription (269�792; 34%) 0.0000 21�38�41 Energy pathways (57�151; 37.7%) 0.0000 15�15�69
Cell proliferation (210�666; 31.5%) 0.0001 23�43�35 ATP biosynthesis (16�23; 69.6%) 0.0000 18�9�73
Oncogenesis (24�47; 51.1%) 0.0003 21�39�39 Synaptic transmission (49�143; 34.3%) 0.0000 9�30�61
Protein amino acid phosphorylation (104�310; 33.5%) 0.0006 23�30�47 Coenzyme biosynthesis (20�40; 50%) 0.0000 15�15�69
Transition metal ion homeostasis (10�16; 62.5%) 0.0076 18�45�36 Cation transport (60�197; 30.5%) 0.0000 13�18�69
Positive regulation cell proliferation (25�62; 40.3%) 0.0119 18�68�14 Protein folding (30�86; 34.9%) 0.0003 32�11�57
Chromatin architecture (34�94; 36.2%) 0.0186 25�43�33 Tricarboxylic acid cycle (12�22; 54.5%) 0.0006 27�27�47
Nucleosome assembly (13�27; 48.1%) 0.0219 11�56�33 Glycolysis (14�29; 48.3%) 0.0007 6�18�76
Histogenesis and organogenesis (22�57; 38.6%) 0.0319 22�17�61 Neurogenesis (64�244; 26.2%) 0.0011 19�27�53
Cell adhesion (94�314; 29.9%) 0.0346 19�46�35 Amino acid catabolism (13�30; 43.3%) 0.0038 33�0�67
Development (235�850; 27.6%) 0.0425 21�42�37 Ubiquitin-dependent protein catabolism

(27�87; 31%)
0.0043 48�13�39

Complement activation, classical (9�18; 50%) 0.0576 10�40�50 Secretion (14�37; 37.8%) 0.0095 0�35�65
Negative regulation cell proliferation (28�83; 33.7%) 0.0762 09�50�41 Protein transport (66�288; 22.9%) 0.0245 26�25�49
Isoprenoid metabolism (6�10; 60%) 0.0789 00�83�17 Neurotransmitter metabolism (6�11; 54.5%) 0.0329 17�17�67
Apoptosis (72�255; 29.5%) 0.0818 13�32�55 Axon guidance (8�19; 42.1%) 0.0404 27�9�64
Defense response (102�360; 28.3%) 0.1010 15�57�28 Calcium ion transport (11�32; 34.4%) 0.0482 7�7�87
Lipid metabolism (82�288; 28.5%) 0.1250 15�47�38 Microtubule-based process (20�73; 27.4%) 0.0538 11�21�68

Biological process categories significantly overrepresented by ADGs (P � 0.05; EASE score) and a few other selected categories are shown. Numerous other
similar significant categories are not included to reduce redundancy. Significant functional categories are those with a higher ratio of identified genes to all genes
tested on the array for associations with that category, relative to the ratio of total identified genes in the study to all genes tested on the array for associations
with all categories. Association numbers approximate but are not exactly equal to gene numbers in a category. After each category description (in parentheses)
is the ratio of associations for that category and the percentage represented by that ratio. The analogous ratios for total identified up-regulated and
down-regulated genes are shown in the headings (Total). EASE, modified Fisher’s exact test P value; N�M�B, percentage of genes included in category because
they were significant by NFT correlation (N), MMSE correlation (M), or both (B). (The complete list of ADGs is given alphabetically in Table 5).
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categories shown in Table 3 were of particular interest because
they reflect groups of genes correlated with AD markers in the
incipient subjects. Transcription factor, proliferation, and devel-
opment processes were among the largest categories of up-
regulated IADGs. In addition, extracellular matrix�cell adhe-
sion�motility processes, comprising multiple laminins (A2,4),
integrins (A1,6,7), tenascins, collagens, cadherins, proteogly-
cans, and amyloid precursor protein were up-regulated. Of note,
several individual members of the semaphorin�plexin pathway,
which inhibits axonal elongation, also were up-regulated IADGs
(e.g., SEMA3B and plexin B2) (Table 6). Further, histogenesis,
apoptosis, phosphorylation, and lipid metabolism, including
prostaglandin synthesis, were overrepresented by up-regulated
IADGs (Table 3). Although their categories were not overrep-
resented, several up-regulated IADGs reflected inflammatory
and oxidative stress processes (e.g., IFN-�, IL-18, interleukin
receptors, and AOP2) (Table 6).

For down-regulated categories, a major difference was seen
between ADGs and IADGs, in that multiple protein metabolism
categories, including folding and transport (immunophilins, chap-
erones, and heat shock proteins), were overrepresented by IADGs
(Table 3) but not ADGs (Table 2). One of the hallmarks of AD,
reduced energy metabolism, which dominated the down-regulated
categories of ADGs (Table 2), was only reflected in one category,
electron transport, of down-regulated IADGs (Table 3).

Calcium Signaling Regulation. Altered Ca2� signaling is suspected
of a role in AD and brain aging and also was identified in a recent
microarray study of aging (44). Although signaling pathways in
general, including Ca2� pathways and transport systems, were
down-regulated in AD (Tables 2 and 3), some individual up-
regulated Ca2�-dependent IADGs included the cAMP response
element-binding protein (CREB) cofactor (EP300), a calpain
inhibitor (calpastatin), S100A4, and the Ca2�-dependent death-
associated protein kinase (DAPK2) (Table 6).

Transcription Factors (TFs). The TF category was the most signif-
icantly overrepresented by up-regulated IADGs and ADGs.
Table 4 shows the TF-category IADGs correlated with NFT,
MMSE scores, or both (only those correlated at P values of
�0.025 are shown). Review of the functions of the identified TFs
revealed that a disproportionately high number are tumor
suppressors (TSs) or TS cofactors (boldface), including several
of the retinoblastoma (RB) family (also see Table 6 for addi-
tional RB members). Many other identified TFs are related to
lipid�cholesterol biosynthesis and adipocyte differentiation (un-

derlined). Numerous zinc finger TFs favoring transcriptional
repression also were identified. Paradoxically, however, a con-
siderable number of the remaining TFs are associated with
growth or proliferation. In general, more up-regulated TFs for
TS and lipogenesis were correlated with NFT scores than with
MMSE, whereas more growth-related TFs were correlated with
MMSE (Table 4; see Table 6 for gene descriptions).

TS. The high proportion of TS-related TFs prompted us to inspect
other biological process categories for genes with TS functions.
Many IADGs with TS or cellular differentiation functions were
found in the phosphorylation, apoptotic, cell cycle, and other
categories (e.g., TGF-�, GSK3B, PDCD4, FZR1, SFRP1, AIM1,
DAPK2, and CDK2AP1). Conversely, inspection of the down-
regulated TF categories (not shown) revealed many TFs important
for growth and proliferation, including several of the MYC family
(MGA and IRLB) and DP1(TFDP1), a member of the growth-
promoting E2F family targeted by the RB family of TSs (Table 6).

PKA Pathways. The cAMP-dependent protein kinase (PKA)
pathway stimulates growth in some cell types and differentiation
and inhibition of growth in others (55). Several PKA-related
genes were up-regulated IADGs, including A kinase-anchoring
molecules (AKAP9, AKAP13, and CAP350), adenylate cyclase
7, and the PKA RII� subunit (Table 6).

Table 3. Biological process categories overrepresented by incipient correlations (IADGs)

Up-regulated (Total: 379�6,265; 6%) EASE N�M�B Down-regulated (Total: 154�6,265; 3%) EASE N�M�B

Regulation of transcription, DNA. . . (64�781; 8%) 0.008 30�49�21 Protein folding (13�86; 15%) 0.000 71�21�7
Histogenesis and organogenesis (9�57; 16%) 0.020 33�44�22 Axon cargo transport (3�5; 60%) 0.006 67�33�0
Chromatin assembly�disassembly (8�52; 15%) 0.035 22�78�0 Synaptic transmission (10�143; 7%) 0.008 33�67�11
Cell proliferation (52�666; 8%) 0.041 30�46�23 Protein metabolism (46�1,415; 3%) 0.028 64�28�9
Cell adhesion (26�314; 8%) 0.092 36�46�18 Microtubule-based movement (4�33; 12%) 0.046 50�50�0
Development (61�850; 7%) 0.103 38�43�19 Electron transport (10�200; 5%) 0.055 45�36�18
Protein amino acid phosphorylation (25�310; 8%) 0.122 38�46�15 Cytokinesis (5�61; 8%) 0.061 60�20�20
Cell motility (16�182; 9%) 0.134 35�41�24 Intracellular transport (15�369; 4%) 0.066 58�37�5
Lipid metabolism (23�288; 8%) 0.148 48�39�13 GPCR signaling pathway (11�264; 4%) 0.111 33�53�13
Apoptosis (20�244; 8%) 0.150 24�62�14 Cell surface signal transduction (17�492; 4%) 0.145 43�48�10

Biological process categories significantly overrepresented by IADGs (P � 0.15; EASE score) and a few other selected categories are shown. Numerous other
similar significant categories are not included to reduce redundancy. Significant functional categories are those with a higher ratio of identified genes to all genes
tested on the array for associations with that category, relative to the ratio of total identified genes in the study to all genes tested on the array for associations
with all categories. The association numbers approximate but are not exactly equal to gene numbers in a category. After each category description (in
parentheses) is the ratio of associations for that category and the percentage represented by that ratio. The analogous ratios for total identified up-regulated
and down-regulated genes are shown in the headings (Total). EASE, modified Fisher’s exact test P value; N�M�B, percentage of genes included in category because
they were significant by NFT correlation (N), MMSE correlation (M), or both (B). (The complete list of IADGs is given alphabetically in Table 6).

Table 4. Up-regulated IADGs categorized as TFs

�NFT
ZNF253 CEBPA RBAK THG-1 KLF2
SREBF1 NF1-C PML ZNF268 RBL1(p107)*
C20orf104 RBBP1 GL12 ZBRK1 PPARBP*
RXRB CERD4 ASCL1 GTF21

�MMSE
SMARCC2 RUNX2 ZNF198 SP1B SP3
BRD1 TIX1 CHD2 HMGB3 ENSR1
ZNF32 LOC51580 HOXB5 HOXC4 Rpo1–2
ZNF7 C22orf NCOA3 TCF3 PRKR
ZNF43 ID4 EP300 PB1 ZNF136*
ZNF254 ZNF237 ZNF83 ZNF84

Gene symbols for TF IADGs positively correlated with NFT, negatively
correlated with MMSE, or both (*) are shown separately (only those with P �

0.025). IADGs for TS (boldface) or lipogenic (underlined) functions are high-
lighted. (Full descriptions of all IADGs, alphabetically listed, are available in
Table 6).
*TF category IADGs correlated with both NFT and MMSE scores.
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Discussion
Overview of Gene Changes in Incipient AD. These studies reveal that
widespread changes in genomic regulation of multiple cellular
pathways are major correlates of incipient AD. As noted, it has
been recognized previously that inflammation, synaptic dysfunc-
tion, energy failure, glial reactivity, protein misfolding, lipogen-
esis and cell cycle disturbances accompany AD. However, the
major transcriptional orchestration seen here in incipient AD
may provide a new perspective on the possible origins of these
deleterious processes. In addition, the widespread activation of
growth, differentiation, and TS pathways, and the apparent
collapse of protein transport machinery so early in the disease,
suggest clues on the early pathogenesis of AD. These conclusions
are supported by reasonably high levels of statistical confidence
for individual genes and by statistical evidence of coregulation
of genes within related pathways and categories.

Activation of TS Pathways. Multiple TSs, some of which regulate the
cell cycle, were identified here within the TF (Table 4) and other
categories. Previous studies have found evidence of cell cycle
reentry in neurons of the AD brain (27, 28), and a handful of studies
have also examined TSs in relation to AD, largely in terms of their
roles in apoptotic pathways (e.g., p53) (28, 56–58). However, TSs
have other actions unrelated to apoptosis and can, in fact, be
antiapoptotic (57, 59). Notably, TSs play critical roles in cellular
differentiation related to development and tumor suppression. For
example, overexpression of some TSs (e.g., RB proteins) induces
cell cycle arrest, differentiation, and process extension in astrocy-
tomas (58, 60). TS expression also is necessary for neurite extension
and synaptogenesis in neuronal development (57, 61). Moreover, in
some cell types, TSs operate by inducing cellular senescence and
inhibiting protein biosynthesis (62).

Many of the other identified processes reflect differentiation
or senescence pathways and could therefore mediate TS actions.
For example, the extensive extracellular matrix (ECM) remod-
eling and cell adhesion changes observed, presumably mediated
largely by astrocytes, are similar to processes seen during astro-
cyte differentiation or cell-type-specific responses to injury
(63–65). Analogous ECM�adhesion pathways are also used by
peripheral cells to suppress cancer cell invasion and metastasis
during oncogenesis (66). Similarly, inflammatory responses,
mediated by glial cells in the brain (17, 18), also can be
tumor-suppressive (67–69). Further, the generalized shutdown
of protein metabolism seen here in early AD (Table 3) is a
common manifestation of TS-mediated cellular senescence in
some cell types (62). Also, the up-regulation of lipid metabolism
pathways (Tables 3 and 4) may reflect activation of oligoden-
drocyte (OG) myelination programs (44, 70), which are ex-
pressed primarily in terminally differentiated OGs and can be
directly activated by TSs (71). In turn, altered ECM, impaired
microtubular transport of proteins, and disturbed myelination
could be unfavorable for axonal elongation and maintenance.
Interestingly, GSK3B, an up-regulated IADG (Table 6) that
exhibits TS activity in the Wnt pathway, also plays a role in the
hyperphosphorylation of tau (8, 9), in which it acts cooperatively
with PKA (72). Thus, multiple processes identified in incipient
AD could reflect TS-mediated differentiation or senescence
responses of specific brain cell types and result in early pathology
of myelinated axons.

This possibility, in turn, raises the question of what might trigger
TS activation. TSs can be activated by developmental factors,
DNA�cellular damage, or dysregulation of the cell cycle. Therefore,
oxidative stress, inflammation, or abnormal Ca2� signaling are
clearly candidate activators of TSs. In addition, TSs act as negative
feedback regulators of growth and are often elevated in response to
excess growth factor (GF) production in tumors (73). Many up-
regulated GFs also were identified here (Table 4), perhaps origi-

nating in OGs and their progenitors, which retain substantial
growth potential in adult brain. Consistent with this possibility,
several of the up-regulated IADGs, including PDGFB, FYN, and
FGFR3, play major roles in OG proliferation, differentiation, and
myelinogenesis (74, 75). However, if correct, this interpretation
would still leave unanswered the question of what stimulates excess
GF release from OGs (but see ref. 44).

Implications of NFT- and MMSE-Specific Correlated Processes. Al-
though more IADGs were correlated with MMSE than NFT
scores, several major processes were notable exceptions (Table
3), in particular, up-regulated lipid metabolism and down-
regulated protein folding�metabolism. Among up-regulated TFs
(Table 4), IADGs for TSs, lipid biosynthesis, and transcriptional
repression were more often correlated with NFT scores. Further,
up-regulation of semaphorins (SEMA3B) and axonal sema-
phorin receptors (plexinB2 and ESDN), which mediate growth
cone collapse and axonal retraction and guide OG migration
(76–78), were correlated with NFT scores (Table 6). In contrast,
TFs for growth (Table 4) and genes related to adhesion and
inflammation were more often correlated with MMSE.

A Model of AD Progression Along Myelinated Axons. The transcrip-
tional responses identified here and their marker-specific cor-
relations suggest a previously unreported model of incipient AD
pathology (Fig. 3). Alterations in axons or myelin sheaths
initially stimulate growth�remyelination responses in localized
OGs, which in turn secrete GFs that activate adjacent neurons
and glial cells. This triggers compensatory TS responses specific
to cell type that induce protein aggregation, affect axonal–myelin
interactions, and result in NFTs. As NFT density increases, wider
ECM, amyloid precursor protein, and inflammatory changes
may be triggered that impact cognition. This model could help
to explain why AD pathogenesis appears to march along my-
elinated axons from the entorhinal cortex to hippocampus and
neocortex (48, 79), leaving NFTs and plaques in its wake.

In summary, the present studies revealed widespread and
apparently orchestrated transcriptional responses associated
with early signs of AD pathology. Dissecting the bases for these
early responses should yield important insights into pathogenic
mechanisms and suggest therapeutic approaches to AD.

Fig. 3. Schematic model. In this model, OGs are activated either by damage
to myelin (asterisks in red) or by endogenous deregulation, resulting in GF
production and remyelination (lipogenic) growth responses. GFs from OGs
trigger oligodendrocyte progenitor (OGP) cells to divide, but they also reach
other cell types through extracellular space and perhaps through the myelin
sheath into axons and adjacent OGs. Excess GFs from OGs trigger TS pathways
specific to various brain cell types, which, in turn, induce unfavorable ECM
changes by astroglia (A), proinflammatory cytokines (INF) from microglia (MG)
and astroglia, and repression of protein synthesis (PS) in neurons (N). These TS
responses impair axonal protein transport, induce axonal retraction, activate
additional remyelination programs, and culminate in NFTs and, perhaps,
altered amyloid precursor protein processing. This process begins in the
entorhinal cortex and spreads sequentially through adjacent OGs (1–4) along
myelinated axons to the hippocampus and neocortex.
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